長猫

数学

ゼロで割ることを禁止している事の重要性

1÷0や、0÷0など、0で割った問題が話題になることがあります。 数学では0で割ることができないため、答えは「計算不能」だとか、「答えなし」、「定義なし」であって、特定の数にはなりません。
数学

ゼロで割ってはいけない理由の本質

数学では、ゼロで割ることが許されていません。 いや、正確にいうと、数学はゼロで割ることを許さない数の体系で考える事がほとんどです。 その理由はいろいろと考えられますが、追求していくとある本質にたどり着きます。 そ...
数学

行列の右上にtが付いている時は?

行列の右上は指数を表すことが多いのですが、まれに\(t\)や(場合によっては大文字の\(T\))が付いている場合があります。 \(M^t\)こんな感じで。 \(t\)や\(T\)が変数(主に整数)の場合は、\(t\)乗...
整数論

x^4+y^4+z^4=w^4の自然数解

4次のオイラー予想 整数解を求める問題は簡単に作れますが、解答を作るのは簡単ではありません。 オイラー予想で有名なのは、 \(x^4+y^4+z^4=w^4\) の自然数解を求める問題です。 オイラー...
行列

行列の行数と列数

行列とは、数字(文字式などの式や関数も含む)を長方形(マトリックス)状態に並べたものです。 長方形ですから、縦と横があります。 縦の事を列、横の事を行という事もあります。 何列あるのかを示すのが列数です。 ...
微分積分

合成関数の微分公式を使うタイミング

このページでは、合成関数の微分公式を使うタイミングをわかりやすく説明します。 最初に結論ですが、合成関数の微分公式は、文字を置き換えた時に使う公式となります。 合成関数の微分公式とは まずは、合成関数の微分公式の...
微分積分

合成関数の微分公式がなぜかを具体例で検証する

\(y\)を\(t\)の関数、\(t\)を\(x\)の関数とします。このとき合成関数を考えると\(y\)を\(x\)の関数とみなすことができます。 合成関数の微分公式は、 \(\displaystyle \frac{d...
数学

0.999…=1の証明についての議論と誤解

1=0.999…ってホント? 結論からいうと、ほんとです。 証明もあります。 ただ、いろいろな証明がありますが、よくある多くの証明は不完全です。 1=0.999…のよくある証明 ここでは、よくある証明...
数学

式を因数分解するための基礎知識

文字式をが使えるようになって、文字の入った式の計算ができるようになって、最初にぶち当たる壁は因数分解でしょう。 式の展開と違って因数分解は、はるかに厄介です。 ある程度のパターンはありますが、それらのパターンを習得する...
行列

行列3つの積の計算方法

行列の掛け算って定義がちょっと複雑でややこしいです。 2個の行列の掛け算でも複雑に見える行列の積、3個になったらどうなるのか?
タイトルとURLをコピーしました